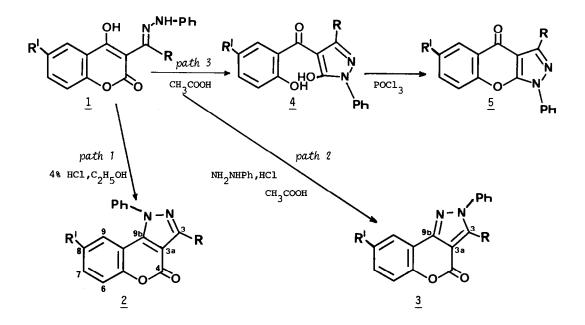
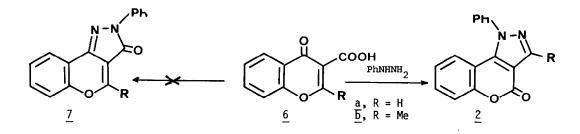

4-OXO-1H-AND-2H-[1]BENZOPYRANO[4,3-c]PYRAZOLES. PREPARATION FROM 4-HYDROXYCOUMARIN OR 3-CHROMONECARBOXYLIC ACID DERIVATIVES.

Bernard Chantegrel, Abdel-Ilah Nadi and Suzanne Gelin[†]

Laboratoire de Chimie Organique, Institut National des Sciences Appliquées F-69621 Villeurbanne Cedex, France.


Summary : The conversion of 3-acyl-4-hydroxycoumarins to either 4-oxo-1-phenyl-1H-[1]benzopyrano[4,3-c]pyrazoles $\underline{2}$ or 4-oxo-2-phenyl-2H-[1]benzopyrano[4,3-c]pyrazoles $\underline{3}$ is described. The product obtained from the reaction of phenylhydrazine with 3-chromonecarboxylic acid $\underline{6a}$ has been established not to be such 2-phenyl[1]benzopyrano[4,3-c]pyrazol-3-2H-one $\underline{7}$ as previously reported but to be 4-oxo-1-phenyl-1H[1]benzopyrano[4,3-c]pyrazole $\underline{2a}$. Our results showed evidence that the method precedently described as yielding $\underline{2a}$, from 4-chloro-3-formylcoumarin was an implausible one.

Coumarins are well-known for their biological properties¹ as well as their utility in heterocyclic synthesis². In this regard, 3-acyl-4-hydroxycoumarins would be suited for preparing fused-ring systems, according to their cyclization of type A or B with phenylhydrazine as the nucleophile.



Prior to our work, synthetic studies in this area were limited to the construction of 4-oxo-1-phenyl-1*H*-[1]benzopyrano[4,3-c]pyrazoles $\underline{2}$ by cyclodehydration of the hydrazones $\underline{1}^{3,4}$ (path 1). A recent communication from this laboratory described a B-type ring transformation to give the products 4 and 5 (path 3)⁵.

We now report a successful almost regiocontrolled conversion of the hydrazones 1 into the new 4-oxo-2-phenyl-2H-[1]benzopyrano[4,3-c]pyrazoles 3 (path 2), by reaction with phenylhydrazinium chloride in refluxing acetic acid. Treatment of the hydrazones 1 with 4% ethanolic hydrogen chloride afforded the compounds 2, identical with those prepared by using p-toluenesulfonic acid in refluxing xylene for the cyclodehydration^{3,4}. The aldehydic hydrazone 1a failed to give the cyclization to 2a or 3a. Proof of the structures 2 and 3 was obtained from their physical and spectral data. The ¹³C-NMR spectra of <u>2b</u> and <u>3b</u>, clearly demonstrated their structures, by comparison of the C-3, C-3a, C-9b and CH₃ signals. It is known that a carbon adjacent to a sustituted nitrogen (pyrrole-like) resonates upfield of the signal of that same carbon in the other isomer (pyridine-like) in isomeric pyrazoles⁶ ⁹. Additionnal support for the assignments was provided by the ¹H-NMR and UV spectra of each isomer pair. Our results are presented in the tables 1-3.

On the other hand, compounds 2a,b were obtained from the reaction of the corresponding 3-chromonecarboxylic acids 6a,b, by reaction with phenylhydrazine, in accordance with the known nucleophilic rearrangement of these substances¹⁰. However, condensation of 6a with phenylhydrazine has been described as leading to 7^{11} . This alternative structure is ruled out by the observation that the substance shows the characteristic IR band at 1745 cm^{-1} (v CO lactone), as all the other analogous compounds 2. The correct structure 2a was also established by its spectrum, compared to the series of 1-phenyl derivatives 2b-e. In the 13 C-NMR spectra, the downfield shift (11 ppm), due to the methyl effect, observed for the C-3 carbon atom in going from 2a to 2b is in accord with the literature data on related structures⁶.

Condensation of phenylhydrazine with 4-chloro-3-formylcoumarin has been reported as yielding <u>2a</u> (mp 221°C), without any spectral data¹². The melting point of <u>2a</u> is in fact 191°C. We were unable to reproduce the claimed synthesis of 4-chloro-3-formylcoumarin from 4-hydroxycoumarin, N,N-dimethylformamide and phosphorus oxychloride ; instead, 4-hydroxycoumarin was mostly recovered, along with tricoumarol, which was precedently reported as the result of this reaction¹³. It is concluded that the series of the reported products such as <u>2</u> (R = H), was not in fact obtained.

Compd	R	R'	Molecular formula ^a	Procedure	Yteld	M.p. (°C) ^b	I.R. (KBr) v(C=0) cm ⁻¹	U.V. (EtOH) $\lambda \max(nm) \epsilon .10^{-3}$
<u>2a</u>	H	H	C ₁₆ H ₁₀ N ₂ O ₂	(A)	80	191	1745	307 (5.9); 297 (6.6); 270 (11.7); 260 (11.5).
<u>2b</u>	Me	Н	$C_{17}H_{12}N_2O_2$	(A) (B)	60 54	220 ³	1745	308 (6.6); 298 (7.4); 272 (12.3); 261 (12.2).
<u>2c</u>	Et	H	$C_{18}H_{14}N_2O_2$	(B)	60	160 ³	1750	308 (7.3); 299 (8.1); 272 (13.2); 261 (12.9).
<u>2d</u>	Ме	Me	$C_{18}H_{14}N_2O_2$	(B)	71	264	1745	308 (6.7); 272 sh.(8.7); 260 sh.(17.2).
<u>2e</u>	Ме	C1	C ₁₇ H ₁₁ C1N ₂ O ₂	(B)	72	290	1755	310 (6.9); 273 (11.8); 262 (11.8).
<u>3b</u>	Ме	H	$C_{17}H_{12}N_2O_2$	(C)	43 [°]	180	1750	299 (7.6); 282 sh. (10.6).
<u>3c</u>	Et	Н	$^{\rm C}{}_{18}^{\rm H}{}_{14}^{\rm N}{}_{2}^{\rm O}{}_{2}$	(C)	48	144	1750	299 (6.9); 286 sh.(8.7); 273 sh.(10); 259 sh.(16).
<u>3d</u>	Me	Me	$C_{18}H_{14}N_2O_2$	(C)	50 [°]	198	1745	305 (6.7); 272 sh.(8.7); 260 sh. (17.2).
<u>3e</u>	Ме	C1	C ₁₇ H ₁₁ C1N ₂ O ₂	(C)	64 [°]	170	1760	309 (6.7); 298 (7.2); 260 sh. (14.4).

Table 1 - Preparation of Compounds 2 and 3

a, All products gave satisfactory microanalyses. b, recrystallized from ethanol. c, isolated yield by column chromatography.

(A) A mixture of 3-chromonecarboxylic acid $(0.01 \text{ mol})^{10}$ and phenylhydrazine (0.01 mol), in acetic acid (50 ml) was heated under reflux for 4 h. The solvent was removed and the residue was recrystallized to give $\underline{2a}$ or $\underline{2b}$.

(B) 3-Acyl-4-hydroxycoumarin phenylhydrazone $\underline{1}$ (0.01 mol) was added to 4% ethanolic hydrogen chloride. The mixture was refluxed for 6 h. After elimination of the solvent, the residue was recrystallized to give $\underline{2}$.

(C) A mixture of 3-acyl-4-hydroxycoumarin phenylhydrazone $\underline{1}$ (0.01 mol) and phenylhydrazine hydrochloride (1.4 g, 0.01 mol) in acetic acid (100 ml) was heated under reflux for 2 h. After elimination of the solvent, the residue was dissolved in dichloromethane (100 ml). The dichloromethane solution was successively washed with 10% aqueous potassium carbonate solution (3 X 50 ml) and then water. The dry solution was concentrated to 5 ml and chromatographed over silica gel (80 g) using dichloromethane as eluent, to give first $\underline{3}$ as the main product and then $\underline{2}$ (7-11%) as the minor product.

Table 2 - Selected ¹³C-NMR spectral data of compounds 2a,b and $3b \delta$ ppm (CDCl₃).

Compound	C-3	C-3a	C-4	C-9b	CH3
<u>2a</u>	139.5	108.3	157.0	140.9	
<u>2b</u>	150.5	106.2	157.6	141.4	12.8
<u>3b</u>	144.2	106.2	158.4	148.3	12.0

The carbon shifts were assigned from the multiplicity in the off-resonance decoupled spectr and examination of the coupled spectra, general chemical shift argument and literature data on related pyrazoles $^{6-9}$ and coumarins 14 , 15 .

Table 3 - 80 MHz-¹H-NMR spectral data of substances 2 and 3 δ ppm (CDCl₃), J(Hz).

Compound	R	H-6	H-7	R'	H-9	с ₆ н ₅
<u>2a</u>	8.35 (s,1H)	7.0	-7.25 (2H)	7.40-7.50 (2H)		7.61 (s)
<u>2b</u>	2.75 (s,3H)	7.0	-7.40 (2H)	7.50-7.70 (2H)		7.76 (s)
<u>2c</u>	1.42 (t,3H)	6.9	0-7.20 (2H)	7.35-7.50 (2H)		7.62 (s)
	3.12 (q,2H)					
<u>2d</u>	2.66 (s,3H)	7.27 (s,2H)		2.17 (s,3H)	6.86 (s)	7.61 (s)
2 <u>d</u> 2 <u>e</u>	2.66 (s,3H)	7.33 (s,2H)			7.0 (d) J=1	7.40-7.72
<u>3b</u>	2.72 (s,3H)	7.10-7.50 (3H)			8.06 (d/d)	7.51 (s)
					J=7/1	
<u>3c</u>	1.28 (t,3H)		7.10-7.50	8.07 (d/d)	7.51 (s)	
	3.08 (q,2H)	н) 1			J=7/1	
<u>3d</u>	2.73 (s,3H)	7.25 (s,2H)		2.41 (s,3H)	7.87 (s)	7.57 (s)
<u>3e</u>	2.70 (s,3H)	7.17 (d)	7.32 (d/d)		7.92 (d)	7.52 (s)
		J=9	J=9/2		J=2	_

References

- ¹ G. Feuer, Prog. Med. Chem., 10, 85 (1973).
- ² M. Darbarwar and V. Sundaramurthy, Synthesis, 1982, 337.
- ³ N. S. Vul'fson and R. B. Zhurin, <u>Zh. Obshch. Khim</u>., <u>31</u>, 3381 (1961); <u>C.A.</u>, <u>57</u>, 4631 (1962).
- ⁴ A. Mustafa, O. H. Hishmat, A. A. Nawar and K. M. A. Khalil, <u>Justus Liebigs Ann. Chem</u>., <u>684</u>, 194 (1965).
- ⁵ B. Chantegrel, A. Nadi and S. Gelin, Synthesis, accepted for publication.
- ⁶ J. E. Elguero, C. Marzin and J. D. Roberts, J. Org. Chem., 39, 357 (1974).
- ⁷ R. A. Earl, R. J. Pugmire, G. R. Revankar and L.B. Townsend, J. Org. Chem., 40, 1822 (1975).
- ⁸ M. T. Chenon, C. Coupry, D. M. Grant and R. J. Pugmire, <u>J. Org. Chem.</u>, <u>42</u>, 659 (1977).
- ⁹ S. Gelin, R. Gelin and D. Hartmann, <u>J. Org. Chem.</u>, <u>43</u>, 2665 (1978).
- ¹⁰ S. Klutchko, J. Shavel Jr and M. von Strandtmann, J. Org. Chem., <u>39</u>, 2436 (1974).
- ¹¹ C. K. Ghosh and K. K. Mukhopadhyay, Synthesis, 1978, 779.
- ¹² S. R. Moorty, V. Sundaramurthy and N. V. Subba Rao, <u>Indian Journal of Chemistry</u>, <u>11</u>, 854 (1973).
- ¹³ R. B. Arora, N. R. Kirshnaswamy, T. R. Seshadri, S. D. S. Seth and B. R. Sharma, J. Med. Chem., 10, 121 (1967).
- ¹⁴ N. J. Cussans and T. N. Huckerby, <u>Tetrahedron</u>, <u>31</u>, 2719 (1975).
- ¹⁵ A. Rabaron, J. R. Didry, B. S. Kirkiacharian and M. M. Plat, <u>Org. Magn. Reson.</u>, 12 (5) 284 (1979).